NFWProfile

class halotools.empirical_models.NFWProfile(cosmology=FlatLambdaCDM(name="WMAP5", H0=70.2 km / (Mpc s), Om0=0.277, Tcmb0=2.725 K, Neff=3.04, m_nu=[ 0. 0. 0.] eV, Ob0=0.0459), redshift=0.0, mdef='vir', conc_mass_model='direct_from_halo_catalog', concentration_key='halo_nfw_conc', **kwargs)[source] [edit on github]

Bases: halotools.empirical_models.AnalyticDensityProf

Model for the spatial distribution of mass and/or galaxies residing in an NFW halo profile, based on Navarro, Frenk and White (1995), arXiv:9508025.

For a review of the mathematics underlying the NFW profile, including descriptions of how the relevant equations are implemented in the Halotools code base, see Source code notes on NFWProfile and NFWPhaseSpace.

Parameters:

cosmology : object, optional

Instance of an astropy cosmology. Default cosmology is set in sim_defaults.

redshift : float, optional

Default is set in sim_defaults.

mdef: str, optional

String specifying the halo mass definition, e.g., ‘vir’ or ‘200m’. Default is set in model_defaults.

conc_mass_model : string or callable, optional

Specifies the function used to model the relation between NFW concentration and halo mass. Can either be a custom-built callable function, or one of the following strings: dutton_maccio14, direct_from_halo_catalog.

concentration_key : string, optional

Column name of the halo catalog storing NFW concentration.

This argument is only relevant when conc_mass_model is set to direct_from_halo_catalog. In such a case, the default value is halo_nfw_conc, which is consistent with all halo catalogs provided by Halotools but may differ from the convention adopted in custom halo catalogs.

Examples

>>> nfw = NFWProfile()

Methods Summary

circular_velocity(radius, total_mass, conc) The circular velocity, \(V_{\rm cir} \equiv \sqrt{GM(<r)/r}\), as a function of halo-centric distance r.
conc_NFWmodel(*args, **kwargs) NFW concentration as a function of halo mass.
cumulative_mass_PDF(scaled_radius, conc) Analytical result for the fraction of the total mass enclosed within dimensionless radius of an NFW halo,
dimensionless_mass_density(scaled_radius, conc) Physical density of the NFW halo scaled by the density threshold of the mass definition.
enclosed_mass(radius, total_mass, conc) The mass enclosed within the input radius, \(M(<r) = 4\pi\int_{0}^{r}dr'r'^{2}\rho(r)\).
halo_mass_to_halo_radius(total_mass) Spherical overdensity radius as a function of the input mass.
halo_radius_to_halo_mass(radius) Spherical overdensity mass as a function of the input radius.
mass_density(radius, mass, conc) Physical density of the halo at the input radius, given in units of \(h^{3}/{\rm Mpc}^{3}\).
mc_generate_nfw_radial_positions(**kwargs) Return a Monte Carlo realization of points in an NFW profile.
rmax(total_mass, conc) Radius at which the halo attains its maximum circular velocity, \(R_{\rm max}^{\rm NFW} = 2.16258R_{\Delta}/c\).
virial_velocity(total_mass) The circular velocity evaluated at the halo boundary, \(V_{\rm vir} \equiv \sqrt{GM_{\rm halo}/R_{\rm halo}}\).
vmax(total_mass, conc) Maximum circular velocity of the halo profile, \(V_{\rm max}^{\rm NFW} = V_{\rm cir}^{\rm NFW}(r = 2.16258R_{\Delta}/c)\).

Methods Documentation

circular_velocity(radius, total_mass, conc)[source] [edit on github]

The circular velocity, \(V_{\rm cir} \equiv \sqrt{GM(<r)/r}\), as a function of halo-centric distance r.

Parameters:

radius : array_like

Halo-centric distance in Mpc/h units; can be a scalar or numpy array

total_mass : array_like

Total mass of the halo; can be a scalar or numpy array of the same dimension as the input radius.

conc : array_like

Value of the halo concentration. Can either be a scalar, or a numpy array of the same dimension as the input radius.

Returns:

vc: array_like

The circular velocity in km/s; has the same dimensions as the input radius.

Notes

See Spatial Profiles of Halos for derivations and implementation details.

Examples

>>> model = NFWProfile()
>>> Npts = 100
>>> radius = np.logspace(-2, -1, Npts)
>>> total_mass = np.zeros(Npts) + 1e12
>>> conc = 5
>>> result = model.circular_velocity(radius, total_mass, conc)
>>> concarr = np.linspace(1, 100, Npts)
>>> result = model.circular_velocity(radius, total_mass, concarr)
conc_NFWmodel(*args, **kwargs)[source] [edit on github]

NFW concentration as a function of halo mass.

Parameters:

prim_haloprop : array, optional

Array storing the mass-like variable, e.g., halo_mvir.

If prim_haloprop is not passed, then table keyword argument must be passed.

table : object, optional

Table storing the halo catalog.

If your NFW model is based on the virial definition, then halo_mvir must appear in the input table, and likewise for other halo mass definitions.

If table is not passed, then prim_haloprop keyword argument must be passed.

Returns:

conc : array_like

Concentrations of the input halos.

Note that concentrations will be clipped to their min/max permitted values set in the model_defaults module. The purpose of this clipping is to ensure stable results during mock galaxy population. Due to this clipping, the behavior of the conc_NFWmodel function is different from the concentration-mass relation that underlies it.

Examples

In the examples below, we’ll demonstrate the various ways to use the conc_NFWmodel function, depending on the initial choice for the conc_mass_model.

>>> fake_masses = np.logspace(12, 15, 10)

If you use the direct_from_halo_catalog option, you must pass a table argument storing a Table with a column name for the halo mass that is consistent with your chosen halo mass definition:

>>> from astropy.table import Table
>>> nfw = NFWProfile(conc_mass_model='direct_from_halo_catalog', mdef='vir')
>>> fake_conc = np.zeros_like(fake_masses) + 5.
>>> fake_halo_table = Table({'halo_mvir': fake_masses, 'halo_nfw_conc': fake_conc})
>>> model_conc = nfw.conc_NFWmodel(table=fake_halo_table)

In case your halo catalog uses a different keyname from the Halotools default halo_nfw_conc:

>>> nfw = NFWProfile(conc_mass_model='direct_from_halo_catalog', mdef='vir', concentration_key='my_conc_keyname')
>>> fake_halo_table = Table({'halo_mvir': fake_masses, 'my_conc_keyname': fake_conc})
>>> model_conc = nfw.conc_NFWmodel(table=fake_halo_table)

One of the available options provided by Halotools is dutton_maccio14. With this option, you can either pass in a table argument, or alternatively an array of masses via the prim_haloprop argument:

>>> nfw = NFWProfile(conc_mass_model='dutton_maccio14')
>>> fake_halo_table = Table({'halo_mvir': fake_masses, 'halo_nfw_conc': fake_conc})
>>> model_conc = nfw.conc_NFWmodel(table=fake_halo_table)
>>> model_conc = nfw.conc_NFWmodel(prim_haloprop=fake_masses)

Finally, you may also have chosen to define your own concentration-mass relation. If so, your function must at a minimum accept a table keyword argument. Below we give a trivial example of using the identity function:

>>> def identity_func(*args, **kwargs): return kwargs['table']['halo_mvir']
>>> nfw = NFWProfile(conc_mass_model=identity_func, mdef='vir')
>>> fake_halo_table = Table({'halo_mvir': fake_masses})
>>> model_conc = nfw.conc_NFWmodel(table=fake_halo_table)
cumulative_mass_PDF(scaled_radius, conc)[source] [edit on github]

Analytical result for the fraction of the total mass enclosed within dimensionless radius of an NFW halo,

\(P_{\rm NFW}(<\tilde{r}) \equiv M_{\Delta}(<\tilde{r}) / M_{\Delta} = g(c\tilde{r})/g(\tilde{r}),\)

where \(g(x) \equiv \int_{0}^{x}dy\frac{y}{(1+y)^{2}} = \log(1+x) - x / (1+x)\) is computed using g, and where \(\tilde{r} \equiv r / R_{\Delta}\).

See Derivation of the NFW cumulative mass PDF for a derivation of this expression.

Parameters:

scaled_radius : array_like

Halo-centric distance r scaled by the halo boundary \(R_{\Delta}\), so that \(0 <= \tilde{r} \equiv r/R_{\Delta} <= 1\). Can be a scalar or numpy array.

conc : array_like

Value of the halo concentration. Can either be a scalar, or a numpy array of the same dimension as the input scaled_radius.

Returns:

p: array_like

The fraction of the total mass enclosed within the input scaled_radius, in \(M_{\odot}/h\); has the same dimensions as the input scaled_radius.

Examples

>>> model = NFWProfile()
>>> Npts = 100
>>> scaled_radius = np.logspace(-2, 0, Npts)
>>> conc = 5
>>> result = model.cumulative_mass_PDF(scaled_radius, conc)
>>> concarr = np.linspace(1, 100, Npts)
>>> result = model.cumulative_mass_PDF(scaled_radius, concarr)
dimensionless_mass_density(scaled_radius, conc)[source] [edit on github]

Physical density of the NFW halo scaled by the density threshold of the mass definition.

The dimensionless_mass_density is defined as \(\tilde{\rho}_{\rm prof}(\tilde{r}) \equiv \rho_{\rm prof}(\tilde{r}) / \rho_{\rm thresh}\), where \(\tilde{r}\equiv r/R_{\Delta}\).

For an NFW halo, \(\tilde{\rho}_{\rm NFW}(\tilde{r}, c) = \frac{c^{3}/3g(c)}{c\tilde{r}(1 + c\tilde{r})^{2}},\)

where \(g(x) \equiv \log(1+x) - x / (1+x)\) is computed using the g function.

The quantity \(\rho_{\rm thresh}\) is a function of the halo mass definition, cosmology and redshift, and is computed via the density_threshold function. The quantity \(\rho_{\rm prof}\) is the physical mass density of the halo profile and is computed via the mass_density function. See Modeling the NFW Spatial Profile for a derivation of this expression.

Parameters:

scaled_radius : array_like

Halo-centric distance r scaled by the halo boundary \(R_{\Delta}\), so that \(0 <= \tilde{r} \equiv r/R_{\Delta} <= 1\). Can be a scalar or numpy array.

conc : array_like

Value of the halo concentration. Can either be a scalar, or a numpy array of the same dimension as the input scaled_radius.

Returns:

dimensionless_density: array_like

Dimensionless density of a dark matter halo at the input scaled_radius, normalized by the density_threshold \(\rho_{\rm thresh}\) for the halo mass definition, cosmology, and redshift. Result is an array of the dimension as the input scaled_radius.

enclosed_mass(radius, total_mass, conc)[source] [edit on github]

The mass enclosed within the input radius, \(M(<r) = 4\pi\int_{0}^{r}dr'r'^{2}\rho(r)\).

Parameters:

radius : array_like

Halo-centric distance in Mpc/h units; can be a scalar or numpy array

total_mass : array_like

Total mass of the halo; can be a scalar or numpy array of the same dimension as the input radius.

conc : array_like

Value of the halo concentration. Can either be a scalar, or a numpy array of the same dimension as the input radius.

Returns:

enclosed_mass: array_like

The mass enclosed within radius r, in \(M_{\odot}/h\); has the same dimensions as the input radius.

Notes

See Spatial Profiles of Halos for derivations and implementation details.

Examples

>>> model = NFWProfile()
>>> Npts = 100
>>> radius = np.logspace(-2, -1, Npts)
>>> total_mass = np.zeros(Npts) + 1e12
>>> conc = 5
>>> result = model.enclosed_mass(radius, total_mass, conc)
>>> concarr = np.linspace(1, 100, Npts)
>>> result = model.enclosed_mass(radius, total_mass, concarr)
halo_mass_to_halo_radius(total_mass)[source] [edit on github]

Spherical overdensity radius as a function of the input mass.

Note that this function is independent of the form of the density profile.

Parameters:

total_mass: array_like

Total halo mass in \(M_{\odot}/h\); can be a number or a numpy array.

Returns:

radius : array_like

Radius of the halo in Mpc/h units. Will have the same dimension as the input total_mass.

Examples

>>> model = NFWProfile()
>>> halo_radius = model.halo_mass_to_halo_radius(1e13)
halo_radius_to_halo_mass(radius)[source] [edit on github]

Spherical overdensity mass as a function of the input radius.

Note that this function is independent of the form of the density profile.

Parameters:

radius : array_like

Radius of the halo in Mpc/h units; can be a number or a numpy array.

Returns:

total_mass: array_like

Total halo mass in \(M_{\odot}/h\). Will have the same dimension as the input radius.

Examples

>>> model = NFWProfile()
>>> halo_mass = model.halo_mass_to_halo_radius(500.)
mass_density(radius, mass, conc)[source] [edit on github]

Physical density of the halo at the input radius, given in units of \(h^{3}/{\rm Mpc}^{3}\).

Parameters:

radius : array_like

Halo-centric distance in Mpc/h units; can be a scalar or numpy array

mass : array_like

Total mass of the halo; can be a scalar or numpy array of the same dimension as the input radius.

conc : array_like

Value of the halo concentration. Can either be a scalar, or a numpy array of the same dimension as the input radius.

Returns:

density: array_like

Physical density of a dark matter halo of the input mass at the input radius. Result is an array of the dimension as the input radius, reported in units of \(h^{3}/Mpc^{3}\).

Notes

See Spatial Profiles of Halos for derivations and implementation details.

Examples

>>> model = NFWProfile()
>>> Npts = 100
>>> radius = np.logspace(-2, -1, Npts)
>>> mass = np.zeros(Npts) + 1e12
>>> conc = 5
>>> result = model.mass_density(radius, mass, conc)
>>> concarr = np.linspace(1, 100, Npts)
>>> result = model.mass_density(radius, mass, concarr)
mc_generate_nfw_radial_positions(**kwargs)[source] [edit on github]

Return a Monte Carlo realization of points in an NFW profile.

See Monte Carlo realizations of the NFW profile for a discussion of this technique.

Parameters:

num_pts : int, optional

Number of points in the Monte Carlo realization of the profile. Default is 1e4.

conc : float, optional

Concentration of the NFW profile being realized. Default is 5.

halo_mass : float, optional

Total mass of the halo whose profile is being realized, used to define the halo boundary for the mass definition bound to the NFWProfile instance as mdef.

If halo_mass is unspecified, keyword argument halo_radius must be specified.

halo_radius : float, optional

Physical boundary of the halo whose profile is being realized in units of Mpc/h.

If halo_radius is unspecified, keyword argument halo_mass must be specified, in which case the outer boundary of the halo will be determined according to the mass definition bound to the NFWProfile instance as mdef.

seed : int, optional

Random number seed used in the Monte Carlo realization. Default is None, which will produce stochastic results.

Returns:

radial_positions : array_like

Numpy array storing a Monte Carlo realization of the halo profile. All values will lie strictly between 0 and the halo boundary.

Examples

>>> nfw = NFWProfile()
>>> radial_positions = nfw.mc_generate_nfw_radial_positions(halo_mass = 1e12, conc = 10)
>>> radial_positions = nfw.mc_generate_nfw_radial_positions(halo_radius = 0.25)
rmax(total_mass, conc)[source] [edit on github]

Radius at which the halo attains its maximum circular velocity, \(R_{\rm max}^{\rm NFW} = 2.16258R_{\Delta}/c\).

Parameters:

total_mass: array_like

Total halo mass in \(M_{\odot}/h\); can be a number or a numpy array.

conc : array_like

Value of the halo concentration. Can either be a scalar, or a numpy array of the same dimension as the input total_mass.

Returns:

rmax : array_like

\(R_{\rm max}\) in Mpc/h.

Notes

See Spatial Profiles of Halos for derivations and implementation details.

Examples

>>> model = NFWProfile()
>>> Npts = 100
>>> total_mass = np.zeros(Npts) + 1e12
>>> conc = 5
>>> result = model.rmax(total_mass, conc)
>>> concarr = np.linspace(1, 100, Npts)
>>> result = model.rmax(total_mass, concarr)
virial_velocity(total_mass)[source] [edit on github]

The circular velocity evaluated at the halo boundary, \(V_{\rm vir} \equiv \sqrt{GM_{\rm halo}/R_{\rm halo}}\).

Parameters:

total_mass : array_like

Total mass of the halo; can be a scalar or numpy array.

Returns:

vvir : array_like

Virial velocity in km/s.

Notes

See Spatial Profiles of Halos for derivations and implementation details.

Examples

>>> model = NFWProfile()
>>> Npts = 100
>>> mass_array = np.logspace(11, 15, Npts)
>>> vvir_array = model.virial_velocity(mass_array)
vmax(total_mass, conc)[source] [edit on github]

Maximum circular velocity of the halo profile, \(V_{\rm max}^{\rm NFW} = V_{\rm cir}^{\rm NFW}(r = 2.16258R_{\Delta}/c)\).

Parameters:

total_mass: array_like

Total halo mass in \(M_{\odot}/h\); can be a number or a numpy array.

conc : array_like

Value of the halo concentration. Can either be a scalar, or a numpy array of the same dimension as the input total_mass.

Returns:

vmax : array_like

\(V_{\rm max}\) in km/s.

Notes

See Spatial Profiles of Halos for derivations and implementation details.

Examples

>>> model = NFWProfile()
>>> Npts = 100
>>> total_mass = np.zeros(Npts) + 1e12
>>> conc = 5
>>> result = model.vmax(total_mass, conc)
>>> concarr = np.linspace(1, 100, Npts)
>>> result = model.vmax(total_mass, concarr)