TrivialProfile¶
- class halotools.empirical_models.TrivialProfile(cosmology=FlatLambdaCDM(name='WMAP5', H0=<Quantity 70.2 km / (Mpc s)>, Om0=0.277, Tcmb0=<Quantity 2.725 K>, Neff=3.04, m_nu=<Quantity [0., 0., 0.] eV>, Ob0=0.0459), redshift=0.0, mdef='vir', **kwargs)[source]¶
Bases:
AnalyticDensityProf
Profile of dark matter halos with all their mass concentrated at exactly the halo center.
- Parameters:
- cosmologyobject, optional
Astropy cosmology object. Default is set in
sim_defaults
.- redshiftfloat, optional
Default is set in
sim_defaults
.- mdef: str, optional
String specifying the halo mass definition, e.g., ‘vir’ or ‘200m’. Default is set in
model_defaults
.
Examples
You can load a trivial profile model with the default settings simply by calling the class constructor with no arguments:
>>> trivial_halo_prof_model = TrivialProfile()
Methods Summary
dimensionless_mass_density
(scaled_radius, ...)Physical density of the halo scaled by the density threshold of the mass definition.
enclosed_mass
(radius, total_mass)The mass enclosed within the input radius, \(M(<r) = 4\pi\int_{0}^{r}dr'r'^{2}\rho(r)\).
Methods Documentation
- dimensionless_mass_density(scaled_radius, total_mass)[source]¶
Physical density of the halo scaled by the density threshold of the mass definition.
The
dimensionless_mass_density
is defined as \(\tilde{\rho}_{\rm prof}(\tilde{r}) \equiv \rho_{\rm prof}(\tilde{r}) / \rho_{\rm thresh}\), where \(\tilde{r}\equiv r/R_{\Delta}\).- Parameters:
- scaled_radiusarray_like
Halo-centric distance r scaled by the halo boundary \(R_{\Delta}\), so that \(0 <= \tilde{r} \equiv r/R_{\Delta} <= 1\). Can be a scalar or numpy array.
- total_mass: array_like
Total halo mass in \(M_{\odot}/h\); can be a number or a numpy array.
- Returns:
- dimensionless_density: array_like
Dimensionless density of a dark matter halo at the input
scaled_radius
, normalized by thedensity_threshold
\(\rho_{\rm thresh}\) for the halo mass definition, cosmology, and redshift. Result is an array of the dimension as the inputscaled_radius
.
- enclosed_mass(radius, total_mass)[source]¶
The mass enclosed within the input radius, \(M(<r) = 4\pi\int_{0}^{r}dr'r'^{2}\rho(r)\).
For the
TrivialProfile
, this is equal to the total mass of the halo for all non-zero radii.- Parameters:
- radiusarray_like
Halo-centric distance in Mpc/h units; can be a scalar or numpy array
- total_massarray_like
Total mass of the halo; can be a scalar or numpy array of the same dimension as the input
radius
.
- Returns:
- enclosed_mass: array_like
The mass enclosed within radius r, in \(M_{\odot}/h\); has the same dimensions as the input
radius
.