ZuMandelbaum16QuenchingCens¶
- class halotools.empirical_models.ZuMandelbaum16QuenchingCens(prim_haloprop_key='halo_m200m', **kwargs)[source]¶
Bases:
BinaryGalpropModel
Model for the quiescent fraction of centrals as a function of halo mass defined by an exponential function of halo mass.
See Zu & Mandelbaum et al. (2016) Composite Model for a tutorial on this model.
- Parameters:
- prim_haloprop_keystring
Name of the column of the halo table storing the mass-like variable the model is based on, e.g., ‘halo_mvir’ or ‘halo_m200b’.
Examples
>>> model = ZuMandelbaum16QuenchingCens()
Methods Summary
mean_quiescent_fraction
(**kwargs)Quiescent fraction as a function of halo mass, modeled as an exponential:
Methods Documentation
- mean_quiescent_fraction(**kwargs)[source]¶
Quiescent fraction as a function of halo mass, modeled as an exponential:
\(F_{\rm quiescent}(M_{\rm halo}) = 1 - {\rm exp}(-(M_{\rm halo}/M_{\rm char})^{\alpha})\)
- Parameters:
- prim_haloproparray, optional
Array of mass-like variable upon which occupation statistics are based. If
prim_haloprop
is not passed, thentable
keyword argument must be passed.- tableobject, optional
Data table storing halo catalog. If
table
is not passed, thenprim_haloprop
keyword argument must be passed.
- Returns:
- quiescent_fractionarray_like
Array containing mean fraction of quiescent galaxies.
Examples
>>> model = ZuMandelbaum16QuenchingCens() >>> quiescent_fraction = model.mean_quiescent_fraction(prim_haloprop=1e12)