Source code for halotools.mock_observables.two_point_clustering.rp_pi_tpcf_jackknife

r"""
Module containing the `~halotools.mock_observables.rp_pi_tpcf_jackknife` function used to
calculate the two point correlation function and covariance matrix.
"""

from __future__ import absolute_import, division, print_function, unicode_literals

import numpy as np
from astropy.utils.misc import NumpyRNGContext

from .tpcf_estimators import _TP_estimator, _TP_estimator_requirements
from .tpcf_estimators import _TP_estimator_crossx
from .rp_pi_tpcf import _rp_pi_tpcf_process_args
from .tpcf_jackknife import get_subvolume_numbers, _enclose_in_box

from .clustering_helpers import process_optional_input_sample2, verify_tpcf_estimator
from ..mock_observables_helpers import (
    enforce_sample_has_correct_shape,
    get_separation_bins_array,
    get_line_of_sight_bins_array,
    get_period,
    get_num_threads,
)
from ..pair_counters.mesh_helpers import _enforce_maximum_search_length
from ..pair_counters import npairs_jackknife_xy_z

from ..catalog_analysis_helpers import cuboid_subvolume_labels


__all__ = ("rp_pi_tpcf_jackknife",)
__author__ = ("Duncan Campbell", "Andrew Hearin")


np.seterr(divide="ignore", invalid="ignore")  # ignore divide by zero in e.g. DD/RR


[docs] def rp_pi_tpcf_jackknife( sample1, randoms, rp_bins, pi_bins, Nsub=[5, 5, 5], sample2=None, period=None, do_auto=True, do_cross=True, estimator="Natural", num_threads=1, seed=None, approx_cell1_size=None, approx_cell2_size=None, approx_cellran_size=None, ): r""" redshift space correlation function, :math:`\xi(r_{p}, \pi)` and the covariance matrix, :math:`{C}_{ij}`, between ith and jth bin. The covariance matrix is calculated using spatial jackknife sampling of the data volume. The spatial samples are defined by splitting the box along each dimension, N times, set by the ``Nsub`` argument. Example calls to this function appear in the documentation below. See the :ref:`mock_obs_pos_formatting` documentation page for instructions on how to transform your coordinate position arrays into the format accepted by the ``sample1`` and ``sample2`` arguments. Parameters ---------- sample1 : array_like Npts1 x 3 numpy array containing 3-D positions of points. See the :ref:`mock_obs_pos_formatting` documentation page, or the Examples section below, for instructions on how to transform your coordinate position arrays into the format accepted by the ``sample1`` and ``sample2`` arguments. Length units are comoving and assumed to be in Mpc/h, here and throughout Halotools. randoms : array_like Nran x 3 array containing 3-D positions of randomly distributed points. rp_bins : array_like array of boundaries defining the radial bins perpendicular to the LOS in which pairs are counted. Length units are comoving and assumed to be in Mpc/h, here and throughout Halotools. pi_bins : array_like array of boundaries defining the p radial bins parallel to the LOS in which pairs are counted. Length units are comoving and assumed to be in Mpc/h, here and throughout Halotools. Nsub : array_like, optional Lenght-3 numpy array of number of divisions along each dimension defining jackknife sample subvolumes. If single integer is given, it is assumed to be equivalent for each dimension. The total number of samples used is then given by *numpy.prod(Nsub)*. Default is 5 divisions per dimension. sample2 : array_like, optional Npts2 x 3 array containing 3-D positions of points. Passing ``sample2`` as an input permits the calculation of the cross-correlation function. Default is None, in which case only the auto-correlation function will be calculated. period : array_like, optional Length-3 sequence defining the periodic boundary conditions in each dimension. If you instead provide a single scalar, Lbox, period is assumed to be the same in all Cartesian directions. If set to None (the default option), PBCs are set to infinity. Length units are comoving and assumed to be in Mpc/h, here and throughout Halotools. do_auto : boolean, optional Boolean determines whether the auto-correlation function will be calculated and returned. Default is True. do_cross : boolean, optional Boolean determines whether the cross-correlation function will be calculated and returned. Only relevant when ``sample2`` is also provided. Default is True for the case where ``sample2`` is provided, otherwise False. estimator : string, optional Statistical estimator for the tpcf. Options are 'Natural', 'Davis-Peebles', 'Hewett' , 'Hamilton', 'Landy-Szalay' Default is 'Natural'. num_threads : int, optional Number of threads to use in calculation, where parallelization is performed using the python ``multiprocessing`` module. Default is 1 for a purely serial calculation, in which case a multiprocessing Pool object will never be instantiated. A string 'max' may be used to indicate that the pair counters should use all available cores on the machine. approx_cell1_size : array_like, optional Length-3 array serving as a guess for the optimal manner by how points will be apportioned into subvolumes of the simulation box. The optimum choice unavoidably depends on the specs of your machine. Default choice is to use Lbox/10 in each dimension, which will return reasonable result performance for most use-cases. Performance can vary sensitively with this parameter, so it is highly recommended that you experiment with this parameter when carrying out performance-critical calculations. approx_cell2_size : array_like, optional Analogous to ``approx_cell1_size``, but for sample2. See comments for ``approx_cell1_size`` for details. approx_cellran_size : array_like, optional Analogous to ``approx_cell1_size``, but for randoms. See comments for ``approx_cell1_size`` for details. seed : int, optional Random number seed used to randomly downsample data, if applicable. Default is None, in which case downsampling will be stochastic. Returns ------- correlation_function(s) : numpy.ndarray *len(rp_bins)-1* by *len(pi_bins)-1* ndarray containing the correlation function :math:`\xi(r_p, \pi)` computed in each of the bins defined by input ``rp_bins`` and ``pi_bins``. .. math:: 1 + \xi(r_{p},\pi) = \mathrm{DD}r_{p},\pi) / \mathrm{RR}r_{p},\pi) if ``estimator`` is set to 'Natural', where :math:`\mathrm{DD}(r_{p},\pi)` is calculated by the pair counter, and :math:`\mathrm{RR}(r_{p},\pi)` is counted internally using "analytic randoms" if ``randoms`` is set to None (see notes for further details). If ``sample2`` is passed as input (and not exactly the same as ``sample1``), three arrays of shape *len(rp_bins)-1* by *len(pi_bins)-1* are returned: .. math:: \xi_{11}(r_{p},\pi), \xi_{12}(r_{p},\pi), \xi_{22}(r_{p},\pi), the autocorrelation of ``sample1``, the cross-correlation between ``sample1`` and ``sample2``, and the autocorrelation of ``sample2``, respectively. If ``do_auto`` or ``do_cross`` is set to False, the appropriate result(s) are returned. cov_matrix(ices) : numpy.ndarray *[len(rp_bins)-1] \times [len(pi_bins)-1]* by *[len(rp_bins)-1] \times [len(pi_bins)-1]* ndarray containing the covariance matrix :math:`C_{ij}` If ``sample2`` is passed as input three ndarrays of shape *[len(rp_bins)-1] \times [len(pi_bins)-1]* by *[len(rp_bins)-1] \times [len(pi_bins)-1]* are returned: .. math:: C^{11}_{ij}, C^{12}_{ij}, C^{22}_{ij}, the associated covariance matrices of :math:`\xi_{p 11}(r_p, \pi), \xi_{p 12}(r_p, \pi), \xi_{p 22}(r_p, \pi)`. If ``do_auto`` or ``do_cross`` is set to False, the appropriate result(s) is not returned. Notes ----- The jackknife sampling of pair counts is done internally in `~halotools.mock_observables.pair_counters.npairs_jackknife_xy_z`. Pairs are counted such that when 'removing' subvolume :math:`k`, and counting a pair in subvolumes :math:`i` and :math:`j`: .. math:: D_i D_j += \left \{ \begin{array}{ll} 1.0 & : i \neq k, j \neq k \\ 0.5 & : i \neq k, j=k \\ 0.5 & : i = k, j \neq k \\ 0.0 & : i=j=k \\ \end{array} \right. The returned covariance matrix is 2-D. The indices of the matrix are in row-major order. To access the covariance between the (ith rp_bin and the jth pi_bin) and the (kth rp_bin and the lth pi_bin) of the covariance matrix C, sigma2 = C[Npi_bins*i+j,Npi_bins*k+l] where Npi_bins = len(pi_bins)-1 Examples -------- For demonstration purposes we create a randomly distributed set of points within a periodic cube of box length Lbox = 250 Mpc/h. >>> Npts = 1000 >>> Lbox = 100. >>> x = np.random.uniform(0, Lbox, Npts) >>> y = np.random.uniform(0, Lbox, Npts) >>> z = np.random.uniform(0, Lbox, Npts) We transform our *x, y, z* points into the array shape used by the pair-counter by taking the transpose of the result of `numpy.vstack`. This boilerplate transformation is used throughout the `~halotools.mock_observables` sub-package: >>> coords = np.vstack((x,y,z)).T Create some 'randoms' in the same way: >>> Nran = Npts*3 >>> xran = np.random.uniform(0, Lbox, Nran) >>> yran = np.random.uniform(0, Lbox, Nran) >>> zran = np.random.uniform(0, Lbox, Nran) >>> randoms = np.vstack((xran,yran,zran)).T Calculate the jackknife covariance matrix by dividing the simulation box into 3 samples per dimension (for a total of 3^3 total jackknife samples): >>> rp_bins = np.logspace(0.5, 1.5, 8) >>> pi_bins = np.logspace(0.5, 1.5, 8) >>> xi, xi_cov = rp_pi_tpcf_jackknife(coords, randoms, rp_bins, pi_bins, Nsub=3, period=Lbox) To get the standard deviation in each bin of the correlation function >>> sigma = np.sqrt(np.diagonal(xi_cov)).reshape(len(rp_bins)-1,len(pi_bins)-1) """ # process input parameters function_args = ( sample1, rp_bins, pi_bins, sample2, randoms, period, do_auto, do_cross, estimator, num_threads, approx_cell1_size, approx_cell2_size, approx_cellran_size, seed, ) ( sample1, rp_bins, pi_bins, sample2, randoms, period, do_auto, do_cross, num_threads, _sample1_is_sample2, PBCs, ) = _rp_pi_tpcf_jackknife_process_args(*function_args) # determine box size the data occupies. # This is used in determining jackknife samples. if PBCs is False: sample1, sample2, randoms, Lbox = _enclose_in_box(sample1, sample2, randoms) else: Lbox = period do_DD, do_DR, do_RR = _TP_estimator_requirements(estimator) N1 = len(sample1) N2 = len(sample2) NR = len(randoms) j_index_1, N_sub_vol = cuboid_subvolume_labels(sample1, Nsub, Lbox) j_index_2, N_sub_vol = cuboid_subvolume_labels(sample2, Nsub, Lbox) j_index_random, N_sub_vol = cuboid_subvolume_labels(randoms, Nsub, Lbox) # number of points in each subvolume NR_subs = get_subvolume_numbers(j_index_random, N_sub_vol) N1_subs = get_subvolume_numbers(j_index_1, N_sub_vol) N2_subs = get_subvolume_numbers(j_index_2, N_sub_vol) # number of points in each jackknife sample N1_subs = N1 - N1_subs N2_subs = N2 - N2_subs NR_subs = NR - NR_subs # calculate all the pair counts D1D1, D1D2, D2D2 = jnpair_counts( sample1, sample2, j_index_1, j_index_2, N_sub_vol, rp_bins, pi_bins, period, num_threads, do_auto, do_cross, _sample1_is_sample2, ) # pull out the full and sub sample results if do_auto is True: D1D1_full = D1D1[0, :, :] D1D1_sub = D1D1[1:, :, :] D2D2_full = D2D2[0, :, :] D2D2_sub = D2D2[1:, :, :] if do_cross is True: D1D2_full = D1D2[0, :, :] D1D2_sub = D1D2[1:, :, :] # do random counts D1R, RR = jrandom_counts( sample1, randoms, j_index_1, j_index_random, N_sub_vol, rp_bins, pi_bins, period, num_threads, do_DR, do_RR, ) if _sample1_is_sample2: D2R = D1R else: if do_DR is True: D2R, RR_dummy = jrandom_counts( sample2, randoms, j_index_2, j_index_random, N_sub_vol, rp_bins, pi_bins, period, num_threads, do_DR, do_RR=False, ) else: D2R = None if do_DR is True: D1R_full = D1R[0, :, :] D1R_sub = D1R[1:, :, :] D2R_full = D2R[0, :, :] D2R_sub = D2R[1:, :, :] else: D1R_full = None D1R_sub = None D2R_full = None D2R_sub = None if do_RR is True: RR_full = RR[0, :, :] RR_sub = RR[1:, :, :] else: RR_full = None RR_sub = None # calculate the correlation function for the full sample if do_auto is True: xi_11_full = _TP_estimator( D1D1_full, D1R_full, RR_full, N1, N1, NR, NR, estimator ) xi_22_full = _TP_estimator( D2D2_full, D2R_full, RR_full, N2, N2, NR, NR, estimator ) if do_cross is True: xi_12_full = _TP_estimator_crossx( D1D2_full, D1R_full, D2R_full, RR_full, N1, N2, NR, NR, estimator ) # calculate the correlation function for the subsamples if do_auto is True: xi_11_sub = _TP_estimator( D1D1_sub, D1R_sub, RR_sub, N1_subs, N1_subs, NR_subs, NR_subs, estimator ) xi_22_sub = _TP_estimator( D2D2_sub, D2R_sub, RR_sub, N2_subs, N2_subs, NR_subs, NR_subs, estimator ) if do_cross is True: xi_12_sub = _TP_estimator_crossx( D1D2_sub, D1R_sub, D2R_sub, RR_sub, N1_subs, N2_subs, NR_subs, NR_subs, estimator, ) # calculate the covariance matrix # format correlation functions into 1-D vector if do_auto is True: xi_11_sub_flat = np.reshape( xi_11_sub, (N_sub_vol, (len(rp_bins) - 1) * (len(pi_bins) - 1)) ) xi_22_sub_flat = np.reshape( xi_22_sub, (N_sub_vol, (len(rp_bins) - 1) * (len(pi_bins) - 1)) ) if do_cross is True: xi_12_sub_flat = np.reshape( xi_12_sub, (N_sub_vol, (len(rp_bins) - 1) * (len(pi_bins) - 1)) ) if do_auto is True: xi_11_cov = np.array(np.cov(xi_11_sub_flat.T, bias=True)) * (N_sub_vol - 1) xi_22_cov = np.array(np.cov(xi_22_sub_flat.T, bias=True)) * (N_sub_vol - 1) if do_cross is True: xi_12_cov = np.array(np.cov(xi_12_sub_flat.T, bias=True)) * (N_sub_vol - 1) if _sample1_is_sample2: return xi_11_full, xi_11_cov else: if (do_auto is True) & (do_cross is True): return xi_11_full, xi_12_full, xi_22_full, xi_11_cov, xi_12_cov, xi_22_cov elif do_auto is True: return xi_11_full, xi_22_full, xi_11_cov, xi_22_cov elif do_cross is True: return xi_12_full, xi_12_cov
def jnpair_counts( sample1, sample2, j_index_1, j_index_2, N_sub_vol, rp_bins, pi_bins, period, num_threads, do_auto, do_cross, _sample1_is_sample2, ): """ Count jackknife data pairs: DD """ if do_auto is True: D1D1 = npairs_jackknife_xy_z( sample1, sample1, rp_bins, pi_bins, period=period, jtags1=j_index_1, jtags2=j_index_1, N_samples=N_sub_vol, num_threads=num_threads, ) D1D1 = np.diff(np.diff(D1D1, axis=1), axis=2) else: D1D1 = None D2D2 = None if _sample1_is_sample2: D1D2 = D1D1 D2D2 = D1D1 else: if do_cross is True: D1D2 = npairs_jackknife_xy_z( sample1, sample2, rp_bins, pi_bins, period=period, jtags1=j_index_1, jtags2=j_index_2, N_samples=N_sub_vol, num_threads=num_threads, ) D1D2 = np.diff(np.diff(D1D2, axis=1), axis=2) else: D1D2 = None if do_auto is True: D2D2 = npairs_jackknife_xy_z( sample2, sample2, rp_bins, pi_bins, period=period, jtags1=j_index_2, jtags2=j_index_2, N_samples=N_sub_vol, num_threads=num_threads, ) D2D2 = np.diff(np.diff(D2D2, axis=1), axis=2) return D1D1, D1D2, D2D2 def jrandom_counts( sample, randoms, j_index, j_index_randoms, N_sub_vol, rp_bins, pi_bins, period, num_threads, do_DR, do_RR, ): """ Count jackknife random pairs: DR, RR """ if do_DR is True: DR = npairs_jackknife_xy_z( sample, randoms, rp_bins, pi_bins, period=period, jtags1=j_index, jtags2=j_index_randoms, N_samples=N_sub_vol, num_threads=num_threads, ) DR = np.diff(np.diff(DR, axis=1), axis=2) else: DR = None if do_RR is True: RR = npairs_jackknife_xy_z( randoms, randoms, rp_bins, pi_bins, period=period, jtags1=j_index_randoms, jtags2=j_index_randoms, N_samples=N_sub_vol, num_threads=num_threads, ) RR = np.diff(np.diff(RR, axis=1), axis=2) else: RR = None return DR, RR def _rp_pi_tpcf_jackknife_process_args( sample1, rp_bins, pi_bins, sample2, randoms, period, do_auto, do_cross, estimator, num_threads, approx_cell1_size, approx_cell2_size, approx_cellran_size, seed, ): """ Private method to do bounds-checking on the arguments passed to `~halotools.mock_observables.redshift_space_tpcf`. """ sample1 = enforce_sample_has_correct_shape(sample1) sample2, _sample1_is_sample2, do_cross = process_optional_input_sample2( sample1, sample2, do_cross ) if randoms is not None: randoms = np.atleast_1d(randoms) rp_bins = get_separation_bins_array(rp_bins) rp_max = np.amax(rp_bins) pi_bins = get_line_of_sight_bins_array(pi_bins) pi_max = np.amax(pi_bins) period, PBCs = get_period(period) # process randoms parameter if np.shape(randoms) == (1,): N_randoms = randoms[0] if PBCs is True: with NumpyRNGContext(seed): randoms = np.random.random((N_randoms, 3)) * period else: msg = ( "\n When no `period` parameter is passed, \n" "the user must provide true randoms, and \n" "not just the number of randoms desired." ) raise KeyError(msg) _enforce_maximum_search_length([rp_max, rp_max, pi_max], period) if (randoms is None) & (PBCs is False): msg = "If no PBCs are specified, randoms must be provided.\n" raise ValueError(msg) try: assert do_auto == bool(do_auto) assert do_cross == bool(do_cross) except: msg = "`do_auto` and `do_cross` keywords must be boolean-valued." raise ValueError(msg) num_threads = get_num_threads(num_threads) verify_tpcf_estimator(estimator) return ( sample1, rp_bins, pi_bins, sample2, randoms, period, do_auto, do_cross, num_threads, _sample1_is_sample2, PBCs, )