r"""
Module containing the `~halotools.mock_observables.mean_los_velocity_vs_rp` function
used to calculate the pairwise mean line-of-sight velocity
as a function of projected distance between the pairs.
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import numpy as np
from .pairwise_velocities_helpers import (_pairwise_velocity_stats_process_args,
_process_rp_bins)
from .velocity_marked_npairs_xy_z import velocity_marked_npairs_xy_z
__all__ = ('mean_los_velocity_vs_rp', )
__author__ = ['Duncan Campbell']
np.seterr(divide='ignore', invalid='ignore') # ignore divide by zero
[docs]
def mean_los_velocity_vs_rp(sample1, velocities1, rp_bins, pi_max,
sample2=None, velocities2=None,
period=None, do_auto=True, do_cross=True,
num_threads=1,
approx_cell1_size=None, approx_cell2_size=None, seed=None):
r"""
Calculate the mean pairwise line-of-sight (LOS) velocity
as a function of projected separation, :math:`\bar{v}_{z,12}(r_p)`.
Example calls to this function appear in the documentation below.
Parameters
----------
sample1 : array_like
Npts x 3 numpy array containing 3-D positions of points.
velocities1 : array_like
N1pts x 3 array containing the 3-D components of the velocities.
rp_bins : array_like
array of boundaries defining the radial bins perpendicular to the LOS in which
pairs are counted.
pi_max : float
maximum LOS separation
sample2 : array_like, optional
Npts x 3 array containing 3-D positions of points.
velocities2 : array_like, optional
N2pts x 3 array containing the 3-D components of the velocities.
period : array_like, optional
Length-3 array defining periodic boundary conditions. If only
one number, Lbox, is specified, period is assumed to be [Lbox, Lbox, Lbox].
do_auto : boolean, optional
caclulate the auto-pairwise velocities?
do_cross : boolean, optional
caclulate the cross-pairwise velocities?
num_threads : int, optional
number of threads to use in calculation. Default is 1. A string 'max' may be used
to indicate that the pair counters should use all available cores on the machine.
approx_cell1_size : array_like, optional
Length-3 array serving as a guess for the optimal manner by how points
will be apportioned into subvolumes of the simulation box.
The optimum choice unavoidably depends on the specs of your machine.
Default choice is to use *max(rbins)* in each dimension,
which will return reasonable result performance for most use-cases.
Performance can vary sensitively with this parameter, so it is highly
recommended that you experiment with this parameter when carrying out
performance-critical calculations.
approx_cell2_size : array_like, optional
Analogous to ``approx_cell1_size``, but for `sample2`. See comments for
``approx_cell1_size`` for details.
seed : int, optional
Random number seed used to randomly downsample data, if applicable.
Default is None, in which case downsampling will be stochastic.
Returns
-------
vz_12 : numpy.array
*len(rbins)-1* length array containing the mean pairwise LOS velocity,
:math:`\bar{v}_{z12}(r)`, computed in each of the bins defined by ``rp_bins``.
Notes
-----
The pairwise LOS velocity, :math:`v_{z12}(r)`, is defined as:
.. math::
v_{z12} = |\vec{v}_{\rm 1, pec} \cdot \hat{z}-\vec{v}_{\rm 2, pec}\cdot\hat{z}|
where :math:`\vec{v}_{\rm 1, pec}` is the peculiar velocity of object 1, and
:math:`\hat{z}` is the unit-z vector.
:math:`\bar{v}_{z12}(r_p)` is the mean of this quantity in projected radial bins.
Pairs and radial velocities are calculated using
`~halotools.mock_observables.pair_counters.velocity_marked_npairs_xy_z`.
Examples
--------
For demonstration purposes we will work with
halos in the `~halotools.sim_manager.FakeSim`.
>>> from halotools.sim_manager import FakeSim
>>> halocat = FakeSim()
>>> x = halocat.halo_table['halo_x']
>>> y = halocat.halo_table['halo_y']
>>> z = halocat.halo_table['halo_z']
We transform our *x, y, z* points into the array shape used by the pair-counter by
taking the transpose of the result of `numpy.vstack`. This boilerplate transformation
is used throughout the `~halotools.mock_observables` sub-package:
>>> sample1 = np.vstack((x,y,z)).T
We will do the same to get a random set of velocities.
>>> vx = halocat.halo_table['halo_vx']
>>> vy = halocat.halo_table['halo_vy']
>>> vz = halocat.halo_table['halo_vz']
>>> velocities = np.vstack((vx,vy,vz)).T
>>> rp_bins = np.logspace(-2,-1,10)
>>> pi_max = 0.3
>>> vz_12 = mean_los_velocity_vs_rp(sample1, velocities, rp_bins, pi_max, period=halocat.Lbox)
"""
function_args = (sample1, velocities1, sample2, velocities2, period,
do_auto, do_cross, num_threads, approx_cell1_size, approx_cell2_size, seed)
sample1, velocities1, sample2, velocities2, period, do_auto, do_cross,\
num_threads, _sample1_is_sample2, PBCs = _pairwise_velocity_stats_process_args(*function_args)
rp_bins, pi_max = _process_rp_bins(rp_bins, pi_max, period, PBCs)
pi_bins = np.array([0.0, pi_max])
# create marks for the marked pair counter.
marks1 = np.vstack((sample1.T, velocities1.T)).T
marks2 = np.vstack((sample2.T, velocities2.T)).T
def marked_pair_counts(sample1, sample2, rp_bins, pi_bins, period, num_threads,
do_auto, do_cross, marks1, marks2,
weight_func_id, _sample1_is_sample2, approx_cell1_size, approx_cell2_size):
"""
Count velocity weighted data pairs.
"""
if do_auto is True:
D1D1, dummy, N1N1 = velocity_marked_npairs_xy_z(
sample1, sample1, rp_bins, pi_bins,
weights1=marks1, weights2=marks1,
weight_func_id=weight_func_id,
period=period, num_threads=num_threads,
approx_cell1_size=approx_cell1_size,
approx_cell2_size=approx_cell1_size)
D1D1 = np.diff(D1D1, axis=1)[:, 0]
D1D1 = np.diff(D1D1)
N1N1 = np.diff(N1N1, axis=1)[:, 0]
N1N1 = np.diff(N1N1)
else:
D1D1 = None
D2D2 = None
N1N1 = None
N2N2 = None
if _sample1_is_sample2:
D1D2 = D1D1
D2D2 = D1D1
N1N2 = N1N1
N2N2 = N1N1
else:
if do_cross is True:
D1D2, dummy, N1N2 = velocity_marked_npairs_xy_z(
sample1, sample2, rp_bins, pi_bins,
weights1=marks1, weights2=marks2,
weight_func_id=weight_func_id,
period=period, num_threads=num_threads,
approx_cell1_size=approx_cell1_size,
approx_cell2_size=approx_cell2_size)
D1D2 = np.diff(D1D2, axis=1)[:, 0]
D1D2 = np.diff(D1D2)
N1N2 = np.diff(N1N2, axis=1)[:, 0]
N1N2 = np.diff(N1N2)
else:
D1D2 = None
N1N2 = None
if do_auto is True:
D2D2, dummy, N2N2 = velocity_marked_npairs_xy_z(
sample2, sample2, rp_bins, pi_bins,
weights1=marks2, weights2=marks2,
weight_func_id=weight_func_id, period=period, num_threads=num_threads,
approx_cell1_size=approx_cell2_size,
approx_cell2_size=approx_cell2_size)
D2D2 = np.diff(D2D2, axis=1)[:, 0]
D2D2 = np.diff(D2D2)
N2N2 = np.diff(N2N2, axis=1)[:, 0]
N2N2 = np.diff(N2N2)
else:
D2D2 = None
N2N2 = None
return D1D1, D1D2, D2D2, N1N1, N1N2, N2N2
# count the sum of radial velocities and number of pairs
weight_func_id = 3
V1V1, V1V2, V2V2, N1N1, N1N2, N2N2 =\
marked_pair_counts(sample1, sample2, rp_bins, pi_bins, period,
num_threads, do_auto, do_cross,
marks1, marks2, weight_func_id, _sample1_is_sample2,
approx_cell1_size, approx_cell2_size)
# return results: the sum of radial velocities divided by the number of pairs
if _sample1_is_sample2:
M_11 = V1V1/N1N1
return np.where(np.isfinite(M_11), M_11, 0.)
else:
if (do_auto is True) & (do_cross is True):
M_11 = V1V1/N1N1
M_12 = V1V2/N1N2
M_22 = V2V2/N2N2
return (np.where(np.isfinite(M_11), M_11, 0.),
np.where(np.isfinite(M_12), M_12, 0.),
np.where(np.isfinite(M_22), M_22, 0.))
elif (do_cross is True):
M_12 = V1V2/N1N2
return np.where(np.isfinite(M_12), M_12, 0.)
elif (do_auto is True):
M_11 = V1V1/N1N1
M_22 = V2V2/N2N2
return np.where(np.isfinite(M_11), M_11, 0.), np.where(np.isfinite(M_22), M_22, 0.)